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On the non-linear mechanics of wave disturbances in 
stable and unstable parallel flows 

Part 1. The basic behaviour in plane Poiseuille flow 

By J. T. STUART 
National Physical Laboratory, Teddington, Middlesex 

(Received 1 June 1960) 

This paper considers the nature of a non-linear, two-dimensional solution of the 
Navier-Stokes equations when the rate of amplification of the disturbance, at 
a given wave-number and Reynolds number, is sufficiently small. Two types of 
problem arise: (i) to follow the growth of an unstable, infinitesimal disturbance 
(supercritical problem), possibly to a state of stable equilibrium; (ii) for values 
of the wave-number and Reynolds number for which no unstable infinitesimal 
disturbance exists, to follow the decay of a finite disturbance from a possible 
state of unstable equilibrium down to zero amplitude (subcritical problem). 
In case (ii) the existence of a state of unstable equilibrium implies the existence 
of unstable disturbances. Numerical calculations, which are not yet completed, 
are required to determine which of the two possible behaviours arises in plane 
Poiseuille flow, in a given range of wave-number and Reynolds number. 

It is suggested that the method of this paper (and of the generalization 
described by Part 2 by J. Watson) is valid for a wide range of Reynolds numbers 
and wave-numbers inside and outside the curve of neutral stability. 

. 

1. Introduction 
The present paper and the paper by Watson (1960), forming Part 2 of this study, 

contain some new developments in the non-linear theory of the mechanics of 
instability, and may be regarded as following earlier work on the subject by 
Landau (1944), Meksyn & Stuart (1951), Gorkov (1957), Malkus & Veronis 
(1958), Stuart (1956a,b, 1958), Veronis (1959) and Stuart & Watson (1960). 
For detailed discussions of some of the non-linear effects in instability, the reader 
is referred to a paper by Stuart (1958); however, it  is necessary here to describe 
some of the results which were obtained earlier and to explain their relationship 
to the analysis described in the present paper and in Part 2. 

Of the papers mentioned above, those of Gorkov (1957), Malkus & Veronis 
(1958), Stuart & Watson (1960) and Veronis (1959) are concerned with the 
problem of thermal-convective instability when a horizontal layer of fluid is 
heated from below. For a description of this kind of instability the reader is 
referred to the article by Malkus & Veronis (1958). The essential features are 
the following; when a horizontal layer of fluid at rest is heated from below, 
it has a tendency towards instability because the hotter fluid is less dense and 
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therefore tends to convect upwards. However, convection. only takes place if 
this thermally induced buoyancy can overcome the twin effects of thermal 
diffusion and viscous retardation; this happens when a certain parameter, the 
Rayleigh number (W), exceeds a critical value (gC). (Mathematically, this is 
known as the phenomenon of ' branching ' of the solution of a differential equation, 
at a given value of a parameter.) Then the fluid convects into cells of polygonal 
planform-that is, the flow is periodic in both of the horizontd directions. 
According to linearized theory, the velocity increases exponentially with time 
until it  becomes too large for the validity of the linearized theory. On the other 
hand, observations show that, for 9 > gC, a steady, equilibrium state of con- 
vection exists. A theory in accordance with the latter evidence has been developed 
independently by Gorkov (1957) and by Malkus & Veronis (1958). For a given 
wave-number, they obtained the solution of the non-linear equations as an 
amplitude perturbation about the (neutral) solution (of linearized theory), 
which is valid a t  the critical Rayleigh number. This procedure yields a solution 
giving a possible equilibrium state of finite-amplitude convection. However, 
they did not show that the amplification of the unstable solution of linearized 
theory, at a given Rayleigh number, does lead to this steady equilibrium state. 
The latter is a problem of showing that the instability of one equilibrium state 
(namely the original layer of fluid at a Rayleigh number above the critical) of 
the fluid leads to another equilibrium state (namely that of steady finite- 
amplitude convection). This aspect of the problem has been studied by Stuart & 
Watson (1960), who have shown that the unstable solutions of linearized theory 
do grow in amplitude until they approach the equilibrium state, at least for 
Rayleigh numbers close enough to the critical. 

The papers of Gorkov and Malkus & Veronis on the one hand, and that of 
Stuart & Watson (1960) on the other hand, illustrate two different approaches 
to the non-linear problem arising from hydrodynamic instability. In  the first 
approach, the change of the equilibrium state is followed as the Rayleigh number 
is raised; the question of growth or decay of a disturbance with time is not 
studied. In  the second approach, the Rayleigh number is fixed and the develop- 
ment of the solution with time is followed, until an equilibrium state (if one 
exists) is reached. Whichever approach to the problem is used, the equilibrium 
state at a given Rayleigh number is presumably the same. 

It should be mentioned here that, in connexion with the second of these 
approaches, Landau (1944) conjectured that the square of the amplitude (lAI2) 
of a finite disturbance will behave like the solution of the equation 

where t is the time and k, and k, are constants. This equation gives an approxi- 
mation to the amplitude behaviour discussed in the paper by Stuart &Watson, 
and is the equation also derived by Stuart (1958) from an energy principle. 

I n  the present paper it is intended to study the non-linear problem arising 
from instability in plane Poiseuille flow by means of the second of the two 
approaches mentioned above. We consider, therefore, the growth or decay of a 
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disturbance in Poiseuille flow at a fixed Reynolds number, the latter being the 
appropriate parameter in this problem. The problem of linearized instability in 
plane Poiseuille flow may be said to be well understood (see, for example, Lin 
1955). The minimum critical Reynolds number, Uoh/v, is about 5780, where U, is 
the maximum speed in the flow, h is half the distance between the two planes and 
v is the kinematic viscosity. The dimensionless wave-number a at which the 
minimum critical Reynolds number occurs is about 1-02. These calculated 
results were obtained by Thomas (1953) on a digital computer. 

The non-linear problem of instability, when the linearized problem is governed 
by the so-called Orr-Sommerfeld equation (that is, when the disturbance is a 
travelling wave), has been considered by Noether (1921), Heisenberg (1924), 
Meksyn & Stuart (1951) and Stuart (1958). Noether’s paper is concerned pri- 
marily with plane Couette flow, and gives equations for the case in which non- 
linearity is included only to the extent of the Reynolds-stress effect in the 
equation of mean motion; the terms representing the generation of harmonics 
of the basic disturbance are ignored in the analysis. Heisenberg’s paper studies 
similar equations to those of Noether, both for plane Couette flow and for plane 
Poiseuille flow. Neither of the papers mentioned gives solution of the equations 
mentioned: however, Meksyn & Stuart gave an approximate method of solving 
the non-linear equations of Noether and Heisenberg for plane Poiseuille flow, 
and used it to obtain an approximate relation between the critical Reynolds 
number and the amplitude of the disturbance. This relation shows that, as the 
amplitude of the disturbance rises, the critical Reynolds number for instability 
drops. It follows that there may be finite-amplitude solutions of the equations 
of motion at Reynolds numbers and wave-numbers for which the flow is stable 
according to linearized theory. We shall refer to flows which exhibit this 
feature as being ‘ subcritical ’, or as permitting disturbances under subcritical 
conditions. 

On the other hand, Stuart (1958) has performed a different calculation for 
plane Poiseuille flow, using the energy-balance equation for the disturbance. 
At a given Reynolds number, the disturbance velocity was assumed to have a 
shape (in the space dimensions) given by linearized theory, while at the same time 
having as amplitude an unspecified function of time. The energy-balance equa- 
tion then yielded an equation for the amplitude which showed that, at Reynolds 
numbers above the critical for a given wave-number, an unstable disturbance 
amplifies until it reaches an equilibrium amplitude. We may refer to flows which 
exhibit this feature as being ‘ supercritical’, or as permitting disturbances under 
supercritical conditions. 

Clearly the result obtained by Stuart (1958) is different from that obtained 
by Meksyn & Stuart (1951). It is desirable to know whether it is possible for 
both phenomena to exist in the same basic flow or whether one of the results 
mentioned above is a consequence of the approximations made. It was partly 
to resolve this question that the work described in the present paper was con- 
templated. It is our aim here to consider the nature of the limiting non-linear 
solution of the Navier-Stokes equations when the Reynolds number tends to a 
critical value, namely a value for which a disturbance is neutrally stable. A 
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detailed analysis is given which leads to a formidable numerical problem of the 
solution of some ordinary differential equations. The essential result of the 
analysis, barring a particular unlikely contingency, is to show that equilibrium 
disturbances exist either under subcritical conditions or under supercritical 
conditions near to a particular critical Reynolds number. The numerical analysis, 
to which reference has been made, will, when completed, show which is the case. 
In  the event of the unlikely contingency mentioned above, the problem would 
be both subcritical and supercritical near to a given Reynolds number. This 
would mean, physically, that non-linear, finite-amplitude equilibrium flows 
could exist both above and below the critical Reynolds number. Furthermore, 
this unlikely contingency would mean that the present limiting solution would 
not be a valid approximation to Watson’s (1960) expansions mentioned below. 

It is to be emphasized that the present paper is concerned only with the most 
important terms in the non-linear solution when the Reynolds number tends to 
a critical value. The related, and important, problem of the development of a 
valid perturbation expansion of the non-linear, time-dependent Navier-Stokes 
equations has been solved by Watson (1960) in an accompanying paper. The 
reader will probably be interested to know of the relevance of the remarks of 
Lin (1958) to the work described in this paper and that of Watson (1960). In 
his paper, Lin made the following statement, which summarized his conclusion 
from some mathematical analysis: ‘One of the purposes of this paper is to bring 
out the remarkable fact, that for disturbances in a parallel $ow, all the harmonic 
components simultaneously become important around the critical layer, before the 
amplitude of the fundamental component i s  large enough to cause any signi$cant 
distortion of the meanfiow.’ This statement will be seen to be at variance with the 
results of the present paper, where the basic perturbation is of small order A 
(say), the first harmonic of this and the distortion of the mean motion are of 
order Aa, and higher harmonic components are of order An (n 2 3); moreover, 
in comparison with linearized theory, our analysis does produce a significant 
change of the character of the solution, namely the possibility of equilibrium 
states of finite amplitude, without the generation of a large number of harmonic 
components. Therefore Lin’s statement quoted above is invalid because his 
analysis does not encompass all possible disturbances; for example, as we shall 
now show, it ignores some non-linear disturbances of smaller magnitude, 
namely these discussed in this paper. 

In  the present work and that of Watson (1960) the non-linear terms become 
significant when they are of the same order of magnitude (A3)  as the whole group 
of linearized terms. (The largest of the latter terms are of order A ,  and the result 
of setting equal to zero the sum of such terms is the Orr-Sommerfeld equation. 
The remaining terms have order A3. For an analogy we may note that, although 
A and ( A  + A3) are both of order A ,  their difference is A3.) On the other hand, 
Lin studies disturbances such that a typical non-linear term is of the same order 
of magnitude as some linear term; his analysis therefore considers much larger 
disturbances than those of this paper and Watson’s and implies that Fourier 
analysis is not applicable to such amplitudes. For a detailed discussion of these 
matters the reader is referred to $5 3 and 4 of this paper. 
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2. Basic equations 
Let us consider Poiseuille flow under pressure between two parallel planes, 

which are set at a distance 2h apart. In  laminar undisturbed flow, a uniform 
pressure gradient produces a velocity distribution which is independent of x and 
has its maximum value U, at the centre of the channel. In  the following analysis, 
the reference length is h, the reference velocity U, and the reference time h/U,. 
We let x denote the co-ordinate parallel to the planes and z the co-ordinate normal 
to them. The corresponding velocity components are 21 and w, @ is the stream 
function and t is the time. 

The governing differential equation of the two-dimensional motion is 

where 6 = -V2@, (2 .2 )  

R = U,h/u is the Reynolds number and u denotes the kinematic viscosity. In  
undisturbed laminar flow, the motion is parallel to the planes and is given by 

A bar above a symbol denotes a mean with respect to x, while the suffix 1 is used 
to denote the case of undisturbed laminar flow. 

Our object is to examine the stability of the velocity profile (2.3) with respect 
to a disturbance in the form of a two-dimensional travelling wave. We therefore 
assume 

@ = #,(z, t )  + #,(z, t )  exp [ia(x - c,t)] + &(z, t )  exp [ - ia(x - c,t)] 
+ 952(z, t )  exp [2ia(x - c,t)l+ qJ2 exp [ - ~ia(z - c,t)~ 
+ ... 7 (2.4) 

where the symbol N denotes a complex conjugate. The quantity a is the (posi- 
tive) wave-number and c, is the Bave velocity of linearized theory for given a 
and R. The functions $ depend on t to account for any growth or decay of the 
disturbance; furthermore, any variation of wave velocity with amplitude is also 
accounted for by the dependence of $1, etc., on t .  The mean velocity, T i  = a#,/&, 
is different from that of laminar flow (2.3) because of interaction between the 
mean flow and the disturbance (see Stuart 1958, p. 3). 

Substituting (2.4) into (2.1) and separating out the harmonic components, 
we obtain 
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together with equations conjugate to (2.5) and (2.6) and equations involving 
#4, etc. Primes denote derivatives with respect to z. Thus, we have an infinite 

set of differential equations for an infinite set of dependent variables, 5, #2, 

etc. 
Equation (2.7) may be integrated once to give 

where the arbitrary function of time (the pressure gradient) has been chosen to 
have the constant value (2/R), which is the value of the pressure gradient in the 
undisturbed laminar flow. A boundary condition on the motion, there, is that the 
externally applied pressure gradient is to remain unchanged, despite any growth 
or decay of the disturbance. (Another possible boundary condition is that of 
constant mass flux; see Watson (1960).) 

The boundary conditions on the functions U and #, are that 

U = # , = $ ; = O  at z = a l ,  (2.9) 

because the velocity must be zero at a solid boundary. Since T i  is to be an even 
function of z, i t  can be seen from equations (2.5) and (2.6) that #, may be either 
even or odd, with 4% correspondingly odd or even. Equation (2.8), and higher- 
order equations for #%, are consistent with this. We shall consider the case of 

even, and then the boundary conditions on S and #m are 

(12 = 1,2 ,3 ,  ...). (2.10) 
? i = # n = q 5 k = 0  at z = + 1  

?it = #knPl = #!&-l = #2n = = 0 at z = 0 

It is necessary also to specify a condition on the solution of the equations with 
regard to the time dependence. Such a condition may conveniently be referred 
to as an ‘initial’ condition, though we shall find, in some cases, that the con- 
dition has to be applied as t -+ +a, and is thus a ‘terminal’ condition rather 
than an initial condition. 

Let us consider first the case of a disturbance under supercritical conditions 
(Stuart 1958), that is, one which amplifies for small amplitudes. Our object in 
such a case is to calculate the development of the disturbance with the passage 
of time. A suitable initial condition, therefore, is that the function #1 shall be 
an exponentially increasing function of t in the limit as t -+ - CQ; in fact, #1 has 
to be the appropriate function, ll/l(z) exp (acit), where ci > 0, of the linearized- 
instability theory. 

On the other hand, the situation is somewhat different when we consider a 
disturbance under subcritical conditions; in this case, a small disturbance does 
not amplify, but is damped. There is no question of applying an ‘initial’ con- 
dition, in the sense that it is used in the case of disturbances under supercritical 
conditions. However, we can apply a ‘terminal’ condition, namely that the 
function #1 shall be an exponentially decreasing function oft in the limit as t - t  + co ; 
by analogy with the supercritical case, #1 has to be the function $l(z) exp ( w i t ) ,  
where ci < 0, of the linearized stability theory. The problem is to study the non- 
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linear behaviour, at finite values oft ,  of a disturbance which decays to zero, aa 
t + 00, through the linearized-stability solution. 

The subcritical problem with a ‘terminal’ condition may, from the present 
point of view, be regarded as the inverse of the supercritical problem with an 
initial condition. In  either case, the initial or terminal conditions on the functions 
q5,n (m > 1) and ;iz follow automatically, when the condition on g1 is specified, 
if the solution of equations (2.5), (2.6), etc., is expanded in powers of exp (acit). 
Such an expansion is presumably valid for small amplitudes, that is for 

and (i) ci > 0, t -+ - m, (h) ci < 0, t -+ +00. 

Linearized theory 
The linearized theory of instability is based on the neglect of all terms which are 
quadratic in’ the functions $,, q5*, etc. Then, because of linearity, q51 may be 
assumed to be proportional to exp (mi$). If we write 

9&, t )  = c exp (aci t )  +1(z), 

equation (2.5) reduces to the Orr-Summerfeld equation 

(2.11) 

The appropriate solution of equation (2.8) is the steady, laminar flow i& = 1 - 9  
because, with the Reynolds stress neglected, there is no reason for U to vary with 
time (%/at = 0). The boundary conditions for the solution of (2.12), namely 

1 +l = 21.; = 0 at z = +1, 

+; = +T = 0 at z = 0, 
(2.13) 

define an eigenvalue problem for a, R, c, and ci. The (complex) eigenrelation 
yields two real relationships between these four quantities. If ci is specified, u 
and R (say) are each known as functions of c,. For the case c, = 0, a plot of u 
against R yields a curve of ‘neutral stabilty’ (see figure 1). Within this curve 
ci is positive and the disturbance amplifies; the flow is therefore unstable. Out- 
side the neutral curve, ci is negative and the flow is stable. 

For full details of the theory, the reader is referred to the book by Lin (1955), 
and to the reference papers given there. A paper of particular interest for our 
present purposes is that of Thomas (1953), who solved (2.12) on a digital com- 
puting machine and obtained several sets of eigenvalues. The critical Reynolds 
number was found by interpolation to be R, = 5780 at a = 1-02. Furthermore, 
Thomas calculated the eigenfunction, +l(z), for the case 

a = 1, R = lo4, C ,  = 0.2375, C ,  = 0.0037 

(see figure 1 of Stuart 1958). 
In the present paper we shall refer to the inside of the neutral curve described 

above as the supercritical region, because the disturbances there amplify for 
small amplitudes. The region outside the neutral curve (particularly, the region 
to the left of the neutral curve) will be referred to as the subcritical region, 
because the disturbances there decay for small amplitudes. 



360 J .  T .  Stuart 

A possible way of obtaining a formal solution of equations (3.5), (2.6), (2.8), 
etc., and thereby of generalizing the solution of linearized theory, is to expand 
the solution in powers of exp ( w i t ) .  This expansion is likely to be valid provided 
the latter function is small; in the supercritical case, ci > 0, this implies t + - co; 
whereas, in the subcritical case, c, < 0, it implies t -+ + co. 

It is readily seen that such an expansion of the solution would leadto series 
of the form 

’ } (2.14) 
d l ( Z ,  t )  = @ll(@ exp (W) + @13(4 exp ( 3 q t )  + . . . 
d2k, t )  = $22(4 exp ( 2 q  t )  + @24(4 exp ( 4 q  t )  + . . . , 

and it is abundantly clear that the series diverge when exp (acit) is large. In the 
supercritical case, ci > 0, this happens when t + + co whereas, in the subcritical 
case, ci < 0, it happens when t + -a. 

a 

5780 R 

FIGI~RE 1. Neutral curve. 

It may be said that a principal object of the present paper, and that of Watson 
(1960), is to devise a form of expansion which is valid at all times and which yields 
an equilibrium state, if one exists. Such an expansion involves, formally, a 
rearrangement of the terms in the series (2.14). The present paper shows how the 
Leading, dominant, terms of such a new expansion may be obtained, while the 
paper by Watson (1960) develops a rigorous expansion of the solution of the 
Navier-Stokes equations. 

3. A simplification of the non-linear problem of instability in the limit 
of small amplification or damping 

A glance at equations (2.5), (2.6), (2.8) and the corresponding equations for 
the higher harmonics shows that an attempt to obtain a solution of the general 
problem, involving an infinite set of differential equations, would present 
considerable difficulties. For this reason, it seems worth examining whether 
there is some limiting state, as a characteristic Reynolds number is approached, 
for which the infinite set of differential equations may be reduced to a Gnite set. 

In  a recent paper (Stuart 1958) it  is suggested that there may be an equi- 
librium solution of the equations, the square of whose amplitude is proportional 
to the difference between the actual and critical Reynolds numbers, provided 
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this difference is small compared with the critical Reynolds number. We shall 
therefore examine (2.5)) (2.6) and (2.8) on the assumption that the amplitude 
(of q51) is never of greater order of magnitude than ( R  - Rc)*, where R, is the 
critical Reynolds number (for a given wave-number, a). It is more convenient 
to regard q51 as of order c:. (It is known from linearized theory that ci is propor- 
tion to R - Rc.) We also assume that slat is never of greater magnitude than ci ,  
which is its order of magnitude according to linearized theory. 

Consider first equation (2.6); since $1 is of order c t ,  it  can be seen that q5z is of 
order ci. (We return later to a discussion of the terms of order $,q5,.) Moreover, 
it  can be seen from the related equation for the function Q13 that q53 is of order 
c!. From the mean motion equation (2.8), it can be seen that the distortion of 
the mean flow (F  = Ti - ?il) is of order ci; this arises from that part of the Reynolds 
stress which involves products of q51. Thus we have the following orders of 
magnitude : 

q51 c$; q5, c i ;  q53 c f ;  F = u-zl c i ;  apt  ci. (3.1) 

Now consider the higher-order terms in equations (2.5)) (2.6) and (2.8) when 
ci -+ 0. In  equation (2.5) the terms O(q$ q53) are of order cf,  and so can be neglected 
compared with the dominant terms ($1 q5,) on the right-hand side, since the latter 
are of order cf. Although the (linear) terms dn the left-hand side of equation (2.5) 
appear, at first sight, to be of order c!, we shall show shortly that they are of 
order c t ,  and therefore are balanced by the dominant terms on the right-hand 
side of (2.5). In  equation (2.6) the terms O($lq53) are of order cq, and can be 
neglected because they are of higher order than the dominant terms (of order ci)  
on the right-hand side. Furthermore, in equation ( 2 . 8 )  the terms aiii/at and the 
Reynolds stress-term involving the square of are both small (of order cf) 
compared with the dominant Reynolds stress-term. A most important result 
of the above estimate of orders of magnitude is that the functions q5,, etc., do 
not affect the three equations (2.5)) (2.6) and (2.8) in the limit as ci -+ 0. We may 
therefore terminate the Fourier series after the q5z term, and the equations 
governing the problem become 

These three equations, together with the complex conjugates of (3.2) and (3.3), 
form a set of five equations for the five functions q51, g1, q5,, q$ and ii. 

In equation (3.3) the terms proportional to Ti- i i l ,  to ci and to slat have been 
omitted because such terms are of order c3 and therefore of higher order than the 
terms retained. We turn now to a study of equation (3.2). According to the 
linearized instability theory the sum of the (linearized) terms on the left-hand 
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side of the equation is equal to zero. Within the framework of the present theory, 
this condition is replaced by the feature that the set of linearized terms is 
balanced by a set of non-linear terms which are of smaller order (ct) than $,, 
which is of order 4. This apparent disparity in orders of magnitude can be 
resolved in the following way. If we seek a solution of the form 

$1 = AIW $1(4 + O ( C h  (3.5) 

where A ,  is of order ct, then we wish to ensure the cancellation of terms of order 
ct. This can be achieved by choosing @,(z) to be the normalized stream function 
of linearized theory, and then the next higher-order terms in (3.2) are of magni- 
tude 4. A method of calculating the term of order ct  in (3.6) is given in $ 4 .  

Before proceeding to further study of the solution of equations (3.2), (3.3) 
and (3.4), it is desirable to discuss the restrictions on the magnitude of ci which 
are necessary if our approximations are to be valid. In  this connexion, it will 
be noticed that because (aR)-l is very small (of order lo-*) and multiplies the 
highest derivative of equation (2.12) the solution of that equation has a ‘near- 
singularity’ at the point where D = c,+ici; this is the so-called ‘critical’ layer 
(Lin 1955). It is known from the linearized instability theory that this layer of 
rapid change of velocity has a thickness of order e = (aR)+. The existence of 
the critical layer is naturally relevant to the way in which the factor 

u - c, - ( i /a)  apt  
is treated in the non-linear analysis leading to equations (3.2) and (3.3). It seems 
likely that any change (of order ci) in the position of the critical point, due to 
change of ii and c,, must be very small compared with the magnitude of the 
thickness of the critical layer. This suggests that the Fourier expansion (2.4), 
of which (3.2)-(3.4) forms the basic approximation, will converge provided 

ci -g (aB)-j. (3.6) 

If this condition is satisfied the treatment of the left-hand side of (3.2) and the 
neglect of ;i2- ?& and a/at in equation (3.3) are likely to be valid. A discussion of 
the range of Reynolds numbers and wave-numbers for which (3.6) is valid is 
given in $6. 

4. A method of solution of the basic non-linear problem in the limit 
ci 3 0 

We look for a solution of equations (3.2), (3.3) and (3.4) in the form 

(4.1) I $1 = Ad4 @ 1 ( 4  +All(t) @ I l ( Z h  

$2 = A%) @&), 
ii = i i l+A,d,f(2) = l - -~2+AlA1f(Z),  

where A,  is of order ct  and A,, is of order c!. Although in the limit ci -+ 0, only 
the first term of $, is important, both are of importance for the solution of the 
differential equation (3.2). This is because the term @,(z) is the eigenfunction of 
linearized theory for the given a: and R, so that the order of magnitude of terms 
on the left-hand side of (3.2) arising from A ,  $, is only c!, terms of order ct having 
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cancelled; on the other hand, the term A,, $11 must be retained on the left-hand 
side of (3.2) because its order of magnitude is already c t ,  and is not altered because 
@ll is not an eigenfunction. The assumption (4.1) has been generalized by Watson 
(1960) into a valid expansion. 

Substituting (4.1) into (3.2), (3.3) and (3.4), and using (2.12), we obtain 

iCiA1 - - -2 (Ti - a",) ( a d t  i d A  ) 

(4.3) 

(4.4) 

The function g(z)  in (4.2) is defined by 

g(4 = $a$; - a"1) + 2$2($;" - a";, 
- 2$iW - 4a2e2) - $1(+1 - 4a2$6) 

-f (Ti - ."l) +f "$1. (4.5) 

We also write 91(4 = $; - a"1. (4.6) 

It will be noticed that the function $11 is of importance only in certain terms on 
the left-hand side of (3.2), and can be ignored on the right-hand side of (3.2) and 
in (3.3) and (3.4), because there it yields terms of higher order. The boundary 
conditions may be obtained from (2.10) and are 

} (4.7) 
f = $l = $; = $11 = @il = $z = 9; = 0 

f' = $' - $: = $il = $rl = $, = $: = 0 

at z = 1, 

at z = 0. 1 -  

Once the eigenvalue problem (2.12) has been solved for given a and R, so that 
ci, c, and $1 are known, equations (4.3) and (4.4) may be solved for $2 andf. 

which is a real function of z. Knowing $ly $2 anci f, we may then evaluate g(z) 
and gl(z) from (4.5) and (4.6). 

To solve equation (4.2), we look for a separable solution and write 

(4.9) 
(4.10) 

where k is a complex number to be determined. [Another way of approach to 
this notion of separability is to look for a solution in which an equation of the 
form (4.12) is valid, since such an equation is related to the solution derived 
physically in the paper by Stuart (1958). The assumption (4.9), in which g(z) 
has a part proportional to gl(z), then follows automatically.] 
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We then have 

I i 
+A1 2 A  ,[ (iil - c,) ($& - a2$ll) - ;ii; + ($rB - 2a2$;, + a‘@,,) - h(z) = 0. 

(4.11) 

Equation (4.11) will be solved if the following two ordinary differential equa- 
tions are soluble subject to the boundary conditions 

= miA, + iakA;B,, (4.12) 
at 

i 
(ut - c,) - a2@d - Zr $,, +a (@E’ - 2a2G + a4@d = W = g - kg,. 

(4.13) 

Equation (4.12) and its physical implications will be discussed in the next 
section, but first it is necessary to show how equation (4.13), together with its 
boundary conditions (4.7), leads to the determination of k as well as $,,(z). 

An apparent difficulty in the solution of (4.13) is that because ci is very small, 
the form of the left-hand side of (4.13) differs only by a small term, of order c,, 
from the form of (2.12). Consequently, one part of the complementary function 
of (4.13) differs from the normalized eigenfunction, $,(z), only by a term of 
order ci. Since the boundary conditions on @, and $,, are the same, the problem 
of the determination of @,, is ill-conditioned. Watson (1960) has shown that the 
proper solution of this problem lies in considering the equation obtained by adding 
to (4.13) appropriate terms of order ci, to yield 

L$,, = (u, - c, - ici) ($cl - a2@,,) - ii; $,, + i 
($:: - 2a2@:, + 2a4$-,,) = g - kg,. 

(4.14) 
The boundary conditions are 

$,, = @;, = 0 at z = 1, 

$il = $Fl = 0 at z = 0. 
(4.15) 

We may now determine k together with three constants of the complementary 
function, but not the constant multiplying the eigenfunction @,. 

I n  order to  solve this problem most efficiently we need to consider the adjoint 
system to (2.12) and (2.13). The adjoint equation (cf. Ince 1956, pp. 210-14) is 

i 
E R  

EQ, = (ul - C, - ic,) (w - m) + zu; Q,’ + - ( @Iv - 2a2w + a 4 @ )  = 0, (4.16) 

and the adjoint boundary conditions (cf. Ince 1956, pp. 210-14) are 

Q, = @’ = 0 at z = 1, a’= @’” = 0 at z = 0. (4.17) 

For the case ii, = 1 -z2,  it can also be shown that, if the general solution of (2.12) 
is = $lg, then the general solution of (4.1G) is Qg = @:,-a2@lg. Further- 
more, (4.16) is the perturbation vorticity equation, though the conditions (4.17) 
are not the normal boundary conditions on vorticity. 
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If we multiply (4.14) by the solution @ of (4.16) and (4.17), and integrate 
between 0 and 1, we may easily show that the left-hand side yields 

lo1 @.L$,,dz = $,I $,,L@dx. 

This is identically zero by (4.16), so that the right-hand side gives 

Jnl @(g - Icg,) dz = 0. 

(4.18) 

(4.19) 
_ _  

\ol @gdz 

IO1 %dZ' 
Thus k = *  (4.20) 

Having determined k, we may obtain the solution of (4.13) and (4.14), except 
for the addition of an arbitrary multiple of the eigenfunction. 

It should be borne in mind that complications arise if 

IO1 @g,dz = 0. (4.21) 

In this unlikely case the present analysis is no longer valid, and it is necessary 
to use an expansion of the kind discussed by Watson (1960, equation (2.1.20)). 
Thisand otheraspectsof the problem receivedetailed attentionin Watson'spaper. 

It should be noted that the value of k given by the above analysis will, in 
general, have a finite value on the neutral curve (c j  = 0);  moreover, as shown in 
5 5, the sign of the imaginary part of k is of great importance in determining the 
physical nature of the solution. The problem of the solution of (4.14) may be 
reformulated slightly, if desired, by expanding a, c,, R and $, about a point on 
the neutral curve, in which case the number k is independent of ci. 

It is intended to carry out the calculations necessary for the determination of k. 

5. The differential equation for disturbance growth 
Consider equation (4.1 1) and its complex conjugate, namely 

__- 'A' - aci A ,  + iakA?x,, 
at 

- -  a" - ac,B, - iak@ A,, 
at 

(4.12) 

(4.12 a) 

where the parameter k may now be regarded as determined by the method 
described at the end of the last section. If we multiply (4.12) by A,, ( 4 . 1 2 ~ )  by 
A ,  and add, we obtain 

*$ at = 2aci IA,12- 2aki IAl14, (5.1) 

where ki is the imaginary part of k. This equation has been discussed by Stuart 
(1958), with special reference to the case aci > 0 (instability for small disturb- 
ances). The solution is ci C exp ( 2aci t )  

= 1 +kiCexp (2acit)'  

where C is an arbitrary (real) constant. 
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If c, > 0, which implies that the Reynolds number is greater than the critical 
value for the given values of a, it  is clear that the solution (5.2) has a meaningful 
equilibrium value (IA,I2 > 0) if ki > 0; in this case (figure 2) the disturbance 
amplifies in the way predicted by linearized theory ( (All2 - exp (2acit)) at 
t = -03, and tends to the equilibrium value 1A113 = ci/ki as t + +a. If k, < 0 
there is no equilibrium amplitude, because \All2 must be positive. In either case, 
(5.2) gives a correct prediction only for such values o f t  that 1A1I2 is bounded 
and of order ci. 

I IAII' 

FIGURE 2. Growth of amplitude in supercritical case. 

t 

FIUURE 3. Growth of amplitude in subcritical case. 

On the other hand, if ci < 0 the solution (5.2) has a meaningful equilibrium 
value if k, < 0; the disturbance (figure 3 )  takes on the equilibrium value 
\A,Iz = Icil/(kil at t = -03, but the equilibrium is unstable. If the amplitude is 
slightly less than this equilibrium value, the disturbance decays to zero ampli- 
tude via the damped solution of linearized theory ( lAllf N exp ( - 201 lcil t ) ) .  
However, if the amplitude is slightly greater than the equilibrium value the 
disturbance grows in amplitude. Equation (5.2) does not indicate what happens 
to a disturbance which grows in this way, because according to (5.2) the ampli- 
tude tends to infinity and is not restricted to the amplitude range IA,12 N ci. 

If we now multiply equation (4.12) by l/A,, equation (4.12a) by ( -Al/& 
and add, we obtain dtz 0 = 2ikraA2,,* (5.3) 

where k, is the real part of k. Equation (5.3) may be solved to yield 

where to is an arbitrary (real) constant. By multiplying (5.4) by ]A,J2 and taking 
the square root, we obtain 

lAll exp ( i a k r l ;  IA112dt) (5.5) 

where \A,\ is given by (5.2). 
In  interpreting (5 .5 ) ,  we consider first the case ci > 0, ki > 0. When t --+ -00, 

A ,  + !A,  1 eiy = (c,C)+exp (acit+iy), (5.6) 
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where y is a number, independent of t  but dependent on to. On the other hand, 
when t -+ +co, 

where t i  is an arbitrary phase (which is related to the arbitrary number to) .  
The importance of formulae (5.6) and (5.7) lies in the fact that they show that, 
if Ai is non-oscillatory at t = -a, it develops a fluctuation as t progresses and 
has the limiting form (5.7) as t --z +a. Using (2.4) and (4.1), we see that (to 
order c#) 

has the limiting forms 

#1(~, t )  exp [ia(x -crt)l = A,(t) $,(z) exp [ ia (x -cr t ) ]  (5 .8)  

cj(c4 e i y )  +l exp [ia(x - c,t - ici t) l  as t -+ - co, (5.9) 

and 

Formula (6.9) is merely the amplifying disturbance of linearized theory, with 
C) eiy the arbitrary amplitude factor. Formula (5.10) shows that in the ultimate 
equilibrium state the wave velocity is 

(5.11) 

It will also be noticed that there is an arbitrary phase ( t k )  in the fluctuation. 

we find, in fact, that (5.8) has the limiting forms 
For the case ci < 0, Ici < 0, we can obtain similar results to those given above; 

(5.12) (ci C)+ e i y  $,(z) exp [ia(x - c,t - ic,t)] as t -+ + co, 
and (#)*+,(z)exp (. ZCL [ x- ( c,-- 'i,):;') ( t - t t , ) ] )  as t-+ -a. (5.13) 

Equation (5.12) is the damped linearized solution, with (ciC)J eiY as the arbitrary 
amplitude factor. Formula (5.13) shows that, in the (unstable) equilibrium state 

(5.14) 

It should be appreciated that, in the present paper, only a limiting non-linear 
solution (as ci -+ 0) has been obtained; no attempt has been made to develop 
a perturbation series. This, however, has been done by Watson (1960), who has 
shown that equation (4.12) has to be replaced by a generalized version, namely 

dA 
-l at = A,(aci+al[A,(2+a2 [A1]4+ ...), 

where a,, a2 are constants to be determined in a way similar to that in which it is 
suggested that k be determined in the present paper. 

6. Discussion 
As described at the end of $3, a condition for the validity of the solution 

described in this paper and in that of Watson (1960), is that the parameter 
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9 = c,(aR)+ must be sufficiently small compared with unity. Although the 
solution has been derived and explained in this paper on the basis of ci -+ 0, R 
should be recalled that this condition has to be interpreted in terms of the 
parameter 9; in fact the expression ci + 0 means ‘for sufficiently small values 
of 9’. We can evaluate 9 for various wave-numbers and Reynolds numbers by 
reference to the calculations of Thomas (1953) and Shen (1954). The minimum 
critical Reynolds number occurs at R = 5780 for a = 1.02. Calculation shows that 
9 is about 0.08 at a = 1, R = 104; 9 = 0.269 at a = 0.77, R = 5.6 x lo4; 9 = 0.32 
at a = 0.7, R = 12.5 x lo4. These values of 9 are approximately the largest at 
the given values of R. From these and other results it seems that Watson’s 
series will probably converge over the whole wave-number band within the 
neutral curve for a wide range of Reynolds number, certainly up to R = lo4 
and possibly to R = 12-5 x lo4. The method of the present paper is also likely to 
be a good approximation within the neutral curve up to R = lo4 (which is about 
twice the minimum critical Reynolds number), and possibly even to higher 
Reynolds numbers. Thus, at a given Reynolds number in the supercritical range 
from R = 5780 to R = lo4 or lo5, we may expect the method of solution described 
in this paper and in Watson’s to be a valid means of calculating equilibrium 
states, if they exist, for the whole band of unstable wave-numbers. 

At lower Reynolds numbers, where the flow is stable according to  linearized 
theory. Thomas’s calculations yield 

8 =  -0.152 at R = 2500, a =  1-1; 

9 = -0.248 at R = 1600, a = 1-1. 

Thus one would expect to be able to calculate subcritical equilibrium states, if 
they exits, for a large range of Reynolds numbers (possibly down to R = 2500 and 
below) ; but the band of wave-numbers is relatively narrow. 

The approximate calculation of Meksyn & Stuart (1951) led to the evaluation 
of subcritical equilibrium states in the range of Reynolds number down to about 
3000. In  that paper the movement of the ‘critical’ point (ii = c )  was of order 
one-eighth of the thickness of the critical layer. Consequently, the present 
method can be expected to show the validity or otherwise of the method used in 
the earlier paper. 

The differential equation (5.1) for the square of the modulus of the disturbance 
amplitude can be shown to be an energy-balance relation for the fundamental 
(q5J disturbance, in which the rate of increase of disturbance energy equals 
the net flow of energy to the fundamental less the viscous dissipation of energy. 
If we define u’, w’ to represent the velocity components of that part of the dis- 
turbance which has odd wave-number (a, 3a, etc. of (2.4)), and u”, w” to repre- 
sent the velocity components of that part of the disturbance which has even 
wave-numbers (2a, 4a, etc.), then it can be shown that 

JJ ( - u’w’) & az dz dz -; // (g - g)2 dsdz 2 J J f ( d 2  + wf2) dzdx = 
at 

(Y Z)] au. 
- / / [ ( U ’ ~ - W ’ ~ ) -  ax +u’w’ - +- dzdz, (6.1) 
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where the integration ranges over one wavelength (2n/a) and between the 
planes. This equation states that the rate of increase of energy in the ‘odd’ 
part of the disturbance (u‘, w“) equals the rate of transfer of energy from the mean 
motion, less the rate of dissipation of energy, less the rate of transfer of energy 
from the ‘odd’ to the ‘even’ (u”, w”) part of the disturbance. To the order of 
approximation of this paper u’, w” are given by the stream function q5, of (4.1), 
and u”, w” by the stream function q5,;Ihus (6.1) is an equation for rate of change 
of energy of the fundamental. 

By substituting (2.4) and (4.1) into (6.1), with appropriate definitions of the 
velocities in terms of the stream functions, we can obtain 

dM dt = 2 a ~ , I A , 1 ~ + ( k , + k ~ + k , )  ]All4, (6.2) 

where some terms of order ci in the coefficient of IA,14 have been ignored (to- 
gether with higher power of IA,I2 in Watson’s expansion), and 

Comparison with equation (5.1) suggests that 

- 2 ~ k i  = k, + k, + k,, (6.7) 

and in fact this relation can be deduced mathematically from the equations of 5 4. 
The three parts of the coefficient of the fourth power of (6.2) arise from the 

following physical processes: 
(i) the distortion of the mean motion (k,); 

(ii) the generation of the harmonic of the fundamental ( k,);  
(iii) distortion of the fundamental, with regard to its dependence on z (k,). 

It is instructive to consider the signs of the coefficients k,, k,  and k,. Substitution 
of (4.8) into (6.3) shows that k ,  is negative, this term being exactly the one 
calculated as the coefficient of /All4 in the energy-balance method (Stuart 1958). 
(In the derivation of (4.8) terms of order ci were omitted, so that k, has an error 
of order c,; this is negligible to the order we consider, since terms of order c: in 
(6.2) are omitted.) It is now seen that if k, alone is retained, as in the energy- 
balance method, we must obtain a supercritical equilibrium state. 

The estimation of the signs of k, and k ,  is more difficult, and it does not appear 
to be possible to do more than speculate. It seems likely that k, will be negative; 
it represents flow of energy from the fundamental to the first harmonic, which is 

24 Fluid Mech. 



370 J .  T. Stuart 

maintained only by this energy flow. The coefficient k3 icpresents the modifica- 
tion to the net energy flow into the fundamental, due to z-distortion of the 
fundamental; the author knows of no argument which would suggest the sign 
of k3. (It may be noted that the paper of Meksyn & Stuart (1951) included pro- 
cesses (i) and (iii) approximately but excluded process (ii).) 

The net effect of the three processes described above can only be obtained by 
completion of the calculations described in this paper. However, , i t  is possible 
to say that, if a subcritical equilibrium state is to be obtained, k, must be positive 
and must outweigh the combined negative effect of k, and k,. It is felt that a 
major contribution of this paper and of Part 2 is that all the physical processes 
described above are included in mathematical form. 

The extension of the above analysis to include three-dimensional effects has 
been described elsewhere (Stuart 1960). 

The author is greatly indebted to Mr J. Watson for many helpful ideas and 
suggestions. This work was done as part of the research programme of the 
National Physical Laboratory and is published by permission of the Director. 

R E F E R E N C E S  

GORKOV, L. P. 1957 J .  Exp. Theor. Phya., Moscow, 33, 402; translated as Sov. Phys. 

HEISENBERO, W. 1924 Ann. Phya., Lpz., (a), 74, 577; NACA TM 1291. 
INCE, E. L. 1956 Ordinary Differential Eqwztiom. New York: Dover. 
LANDAU, L. 1944 C.R. A&. Sci. U.R.S.S. 44, 311. 
LIN, C. C. 1955 The T h e q  of Hydrodynamic Stability. Cambridge University Press. 
LIN, C. C. 1968 Boundary Layer Research, p. 144. I.U.T.A.M. Symposium, Freiburg, 

1957 (editor, H. Gortler). Berlin: Springer. 
MALKUS, W. V. R. & VERoNIs, G. 1958 J .  Fluid Mech. 4, 225. 
MEKSYN, D. & STUART, J. T. 1961 Proc. Roy. SOC. A, 208, 617. 
NOETHER, F. 1921 2. angew. Math. Mech. 1, 125. 
SHEN, S. F. 1954 J .  Aero. Sci. 21, 82-4. 
STUART, J. T. 1956a J .  Aero. Sci. 23, 86, 894. 
STUART, J. T. 1956b 2. angew. Math. Mech., Sonderhft (1966), p. S. 32. 
STUART, J. T. 1958 J .  Fluid Mech. 4 ,  1. 
STUART, J. T. 1960 On three-dimensional non-linear effects in the stability of parallel 

flows. Preprint for Int. Congr. Aero. Sciences, Zurich, 1960. 
STUART, J. T. & WATSON, J. 1960 On the growth of finite-amplitude thermal convection. 

(To be published.) 
THOMAS, L. H. 1963 Phys. Rev. (2), 91, 780. 
VERONIS, G. 1969 J .  Fluid Mech. 5 ,  401. 
WATSON, J. 1960 J .  Fluid Mech. 9, 371. 

J.E.T.P. 6 (33), 311 (1958). 


